Multi-Label Classification using Class Relations
Based on Higher-Order MRF Optimization

Ryosuke Furuta  Yusuke Fukushima

Toshihiko Yamasaki

Kiyoharu Aizawa

Department of Information and Communication Engineering, The University of Tokyo

{furuta, fukushima, yamasaki, aizawa}@hal.t.u-tokyo.ac.jp

Abstract

In multi-label classification problems, in which multiple
labels are predicted for an input data, the labels assigned to
a particular data are often correlated. Although a method
based on first-order MRF optimization has recently been
proposed in order to treat such correlations, it can only
deal with the relationships between two labels. Therefore,
we propose a method that is the extension of the previous
method to higher-order MRF. Experimental results show
that our method can successfully deal with the relationships
among arbitrary combination of labels and achieves higher
accuracy than the previous method.

1. Introduction

Multi-label classification is a task where multiple bi-
nary labels (“yes” or “no”) are assigned to input data for
each pre-defined class. Most methods proposed for multi-
label classification assign each label independently using
a binary classifier such as support-vector machine (SVM)
trained separately to predict a single label. However, in
many cases of multi-label classification, the labels assigned
to a particular data are often correlated. To tackle the prob-
lem, some CRF/MRF-based methods that deal with the such
correlations have been recently proposed. Yamaguchi et
al. [4] proposed a CRF-based method that leverages the
Pearson correlation between attributes of clothing pairs. Ya-
masaki et al. [5] proposed an MRF-based method that con-
siders the relationships among different label types and the
relationships among different feature types within a single
joint optimization framework, and applied their method to
predicting user impressions on a video presentation. How-
ever, their methods [4, 5] can treat only pairs of labels be-
cause their formulations are both first-order CRF/MRF.

Therefore, in this paper, we extend the method by Ya-
masaki et al. [5] to a higher-order MRF in order to treat
arbitrary combinations of labels, in other words, combina-
tions of more than three labels. Experimental results show

that our method achieves higher accuracy than their method
on their TED dataset. In addition, we present the results on
another task: predicting attribute labels on an image (aPas-
cal & aYahoo dataset [1]).

2. Label assignment based on first-order MRF

In this section, we briefly review the label assignment
method based on first-order MRF proposed by [5].

Let I; € {0,1} be the binary label of the i-th class, and
l € {0,1}" be the labeling of all classes (i = 1,...,n).
Here, [; = 1 means that the ¢-th class is positive, and [; = 0
corresponds to negative meaning. We model the labeling
problem as a Markov random field (MRF):
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[ balances the unary and pairwise terms. The unary term
¢; is the sum of the classification scores by the m classifiers
learned by different types of features.
1;,; is the pairwise term that represents the relationship
between the ¢-th and the j-th classes, which is defined as:
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where N;; is the number of training data that both the i-

th and the j-th classes are labeled. Nil;-lj is the number of
training data in which [; is assigned to ¢-th class and [; is as-
signed to j-th class. By minimizing the Eq. (1), the optimal
labeling that takes account of both the decisions of classi-
fiers and the relationships between labels can be obtained.

3. Extension to Higher-Order MRF

We extend the Eq. (1) to (k — 1)-th order energy function
in order to treat the combinations of k labels.
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Table 1. Accuracy comparison on each dataset.

TED aPascal & aYahoo
Only SVMs 89.2% 91.9%
First-order MRF [5] 93.3% 92.2%
Higher-order MRF (ours) | 93.7% 92.2%

The (k — 1)-th order term wf;;_.ik is the extension of the

first-order pairwise term in Eq. (2) and defined as
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where Nj, ;,...;, is the number of training data that all of %;-
th to i5-th classes are labeled. N, 5 "2,
training data in which labels I;,, [

" is the number of
igs " i), are assigned to
11,19, - , 1k classes, respectively.

We can convert the (k — 1)-th order energy function in
Eq. (3) to a first order energy function while keeping the
global minimum of the energy unchanged by using ELC
reduction proposed by [2]. After that, we can obtain the

global minimum of the energy by using QPBO [3].

4. Experimental Results

We conducted the experiments on two different datasets.
We used first-order, second-order, and third-order terms in
our experiments (i.e., k = 4 in Eq. (3)). The parameters of
our method were tuned for each dataset.

4.1. TED dataset

We applied the proposed method to impression predic-
tion of oral presentations [5]. The setting of this experiment
is same as [5]. 1,646 presentation videos and six types of
features proposed by [5] were used. 14 types of impres-
sion labels were predicted. For each impression voted by
viewers, the top/bottom 10% videos are labeled as posi-
tive/negative instances. We employed the SVM with a ra-
dial basis function (RBF) kernel as the classifier. The accu-
racy was calculated by the leave-one-out method.

The left column of Table 1 shows the average predic-
tion accuracy of the 14 types of impression labels on TED
dataset. We observe that the best performance is achieved
93.7% by our higher-order MRF.

The performance of the impression prediction is shown
as a function of 5 in Fig. 1(a) where (31 and (35 are fix to 0.
We observe that the prediction accuracy is improved as the
B2 is increased up to a certain point (82 = 0.2) and grad-
ually get degraded because the label relationships become
more dominant than the label outputs from the classifiers.

The performance of the impression prediction is shown
as a function of 33 is shown in Fig. 1(b) when 5; and (5
is fixed to 0. We observe that the similar transition of the
prediction performance to Fig. 1(a), and that both second-
order and third-order terms are effective for the prediction.
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Figure 1. Prediction accuracy as functions of 32 and fs.

4.2. aPascal & aYahoo dataset

aPascal & aYahoo dataset [1] consists of 4,340 images
from Pascal VOC 2008 and 2,237 images from Yahoo.
There are 12,695 and 2,644 objects in those images re-
spectively, and binary labels for 64 types of attributes and
bounding box information are assigned to each object. We
cropped each object using the bounding box information
and made 15,339 new images in total. We used the 4,096-
D deep feature of the pre-trained AlexNet. We employed
the linear SVMs, and used 6,340 images of aPascal training
set for training the SVMs. We used 6,355 images of aPas-
cal validation set for calculating pairwise and higher-order
terms, and used all 2,644 images of aYahoo for test.

The right column of Table 1 shows the average predic-
tion accuracy of 64 types of attribute labels. The accuracy
of the baseline method is 91.9%, which predicts each label
independently. The first-order MRF [5] improves the ac-
curacy to 92.2%. We observe that our higher-order MRF
achieves comparable level of accuracy.

5. Conclusion

We proposed an MRF-based label assignment method
that considers the relationship among arbitrary combination
of labels. Our method achieved better or comparable re-
sults on two different datasets, compared with the previous
method that is based on the first-order MRF [5]. For fur-
ther improvement of accuracy, the feedback from MRF to
classifiers is one of the future directions.
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